Weighted Classical Variogram Estimation for Data With Clustering
نویسندگان
چکیده
منابع مشابه
Weighted Classical Variogram Estimation for Data With Clustering
The classical variogram estimate is convenient but can be unacceptably variable. Improved estimators are possible, especially when the locations of the available data are highly clustered. Using a simple theoretical example, we demonstrate that weighting can dramatically increase the efficiency of classical variogram estimates from clustered data. We give expressions for the weights that lead t...
متن کاملClustering Spatial Functional Data: A Method Based on a Nonparametric Variogram Estimation
In this paper we propose an extended version of a model-based strategy for clustering spatial functional data. The strategy, we refer, aims simultaneously to classify spatially dependent curves and to obtain a spatial functional model prototype for each cluster. The fit of these models implies to estimate a variogram function, the trace variogram function. Our proposal is to introduce an altern...
متن کاملWeighted Ensemble Clustering for Increasing the Accuracy of the Final Clustering
Clustering algorithms are highly dependent on different factors such as the number of clusters, the specific clustering algorithm, and the used distance measure. Inspired from ensemble classification, one approach to reduce the effect of these factors on the final clustering is ensemble clustering. Since weighting the base classifiers has been a successful idea in ensemble classification, in th...
متن کاملEntropy-based Consensus for Distributed Data Clustering
The increasingly larger scale of available data and the more restrictive concerns on their privacy are some of the challenging aspects of data mining today. In this paper, Entropy-based Consensus on Cluster Centers (EC3) is introduced for clustering in distributed systems with a consideration for confidentiality of data; i.e. it is the negotiations among local cluster centers that are used in t...
متن کاملFuzzy clustering with weighted medoids for relational data
The well known k-medoids clustering approach groups objects through finding k representative objects based on the pairwise (dis)similarities of objects in the data set. In real applications, using only one object to capture or interpret each cluster may not be sufficient enough which in turn could affect the accuracy of the data analysis. In this paper, we propose a new fuzzy clustering approac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Technometrics
سال: 2007
ISSN: 0040-1706,1537-2723
DOI: 10.1198/004017006000000282